Lightning During Crystal Face

•Lesley E. Ott
Department of Meteorology
University of Maryland
College Park, MD
leo@atmos.umd.edu

•Kenneth E. Pickering
University of Maryland

Introduction

- Information on cloud-to-ground (CG) lightning activity during CRYSTAL-FACE was provided by the National Lightning Detection Work.
- For the duration of the field project, data files for the previous day were downloaded from NASA MSFC, and analyzed at the University of Maryland.
- For WB57 flight days, flashes were counted in 0.25° latitude by 0.25° longitude bins over the south Florida area and hourly plots generated to send to the field.

Introduction (continued)

- Following the completion of the field project, further analysis was completed.
- Plots with increased temporal resolution were generated for several cases of interest.
- Using plots of lightning activity in addition to satellite and radar imagery, CG lightning totals for the primary storms sampled by the WB57 were estimated.
- Data from the Los Alamos Sferic Array (LASA) which has 5 stations in Florida were obtained. The LASA provides data for both intracloud (IC) and CG flashes.

Introduction (continued)

- Hourly plots were generated for specific days of interest to estimate NO production by lightning (see poster by B. Ridley et al.).
- Plots of lightning totals for particular storms were also generated.
- Lightning totals over 10-minute intervals were plotted to compare with particular NO spikes recorded by the WB57.
- Several examples are shown below.

Future Research

- The detection efficiency of the LASA for both CG and IC flashes is currently unknown, though it is being examined at Los Alamos.
- With a knowledge of the detection efficiencies, these data will be used with the NLDN data to deduce the time evolution of the IC/CG ratio for storms studied during CRYSTAL-FACE.
- Approximate times series of IC and CG flash rates will be used along with specified NO production rates in the University of Maryland's Cloud Scale Chemical Transport Model (CSCTM).

Future Research (continued)

- Through comparison of model results with observations of NO taken in storm anvils, the most likely production of NO per flash will be estimated.
- The relationship between total water transport during convection and flash rates will be studied for selected cases using cloud model simulations.
- A possible relationship between aerosols and lightning will also be studied using aerosol data obtained from the Twin Otter.

NLDN Lightning:02/07/16/19-20 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

NLDN Lightning:02/07/16/20-21 UTC (flashes per 0.25 deg. lat. by 0.25 deg. on.)

NLDN Lightning:02/07/29/18-19 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

NLDN Lightning:02/07/29/19-20 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

NLDN Lightning:02/07/16/19-24 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

NLDN Lightning:02/07/29/16-21 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

NLDN Lightning:02/07/07/2000-2010 UTC (flashes per 0.25 deg. lat. by 0.25 deg. lon.)

